

Carrera o Programa: INGENIERÍA MECÁNICA (319801)

Gestión: 2023

Programa Analítico (Asignatura/Taller/Laboratorio)

1. Datos Generales:

Unidad de Formación:	MÁQUINAS TÉRMICAS II		Código SISS:2018044
Carácter: Obligatoria/Electiva	OBLIGATORIA		
Nivel (Semestre/año):	SÉPTIMO SEMESTRE		
Dependencia: Carrera/Programa/Departamento	DEPARTAMENTO DE MECÁNICA		
Carga horaria total semestre/año	100 HORAS SEMESTRE	Créditos acadén	nicos:
Pre-requisitos:	MÁQUINAS TÉRMICAS I (2018041)		

2. Contenidos Mínimos:

Unidad Didáctica 1:	Temas:	
INTRODUCCIÓN	1.1 Conceptos fundamentales de la termodinámica	
	1.2 Procesos termodinámicos.	
	1.3 Ciclo Brayton y Ranking, ecuaciones.	
	1.4 Ciclos abiertos y cerrados.	
	1.5 Ecuación de Flujo cero y de flujo.	
	1.6 Reversibilidad y Irreversibilidad.	
	1.7 Trabajo neto, Rendimiento térmico.	
	1.8 Problemas tipo.	
Unidad Didáctica 2:	Temas:	
TURBINAS DE GAS	2.1 El ciclo Brayton a presión constante, ejercicios	
	2.2 Ciclo real de una turbina de gas	
	2.3 Modificaciones al ciclo básico Interenfriador, Recalentador e Intercambiador.	
	2.4 Compresión y expansión multietapas con interenfriamiento y recalentamiento.	
	2.5 Turbinas de gas industriales, marinas y aeronáuticas.	
	2.6 Ciclo combinado	
Unidad Didáctica 3:	Temas:	
FUNDAMENTOS DEL	3.1 Introducción.	
MOTOR DE TURBINA A	3.2 Teoría de la propulsión.	
COMBUSTIÓN	3.3 ¿Cómo opera un motor de turbina a combustión?.	
	3.4 Potencia de empuje y potencia en el eje	
	3.5 Potencia propulsora	

	UMSS
	3.6 Generación de potencia para un motor a chorro.
	3.7 Potencia total.
	3.8 Factores que afectan la potencia.
	3.9 Consumo especifico de combustible.
	3.10 Procedimientos de prueba de turbinas de gas en Banco de prueba.
Unidad Didáctica 4:	Temas:
TURBINAȘ INDUSTRIALES	4.1 Turbinas Industriales y Aeroderivadas.
Y AERONÁUTICAS	4.2 Turbinas Aeronáuticas.
	4.3 Motores turbojet, Turbofan , Turbohélice y Turboeje.
	4.4 Motores con quemadores posteriores.
	4.5 Otros tipos de turbinas a gas aeronáuticas.
	4.6 Contaminación ambiental.
Unidad Didáctica 5:	Temas:
	5.1 Compresores tipos Centrífugos y axiales.
COMPONENTES	5.2 Desplome del compresor causas y soluciones.
PRINCIPALES DE	5.3 Cámaras de combustión Tipos cilíndricas, anulares y canulares.
TURBINAS DE GAS	5.4 Inyectores de combustible.
	5.5 Turbinas de acción y reacción.
	5.6 Accesorios principales Caja de accesorios bomba de combustible, control de
	combustible.
	5.7 Materiales utilizados en la fabricación de turbinas de gas.
Unidad Didáctica 6:	Temas:
	6.1 Sistema de lubricación.
SISTEMAS PRINCIPALES	6.2 Sistema de control de combustible.
DE TURBINA DE GAS	6.3 Sistema de Indicación temperatura, presión y empuje.
	6.4 Sistema de Ignición.
	6.5 Sistema de vibración.
Unidad Didáctica 7:	Temas:
	7.1 Tipos de Mantenimiento.
MANTENIMIENTO DE	7.2 Mantenimiento de Línea.
TURBINAS DE GAS	7.3 Mantenimiento de Taller.
TOTABILATO DE CATO	7.4 Programas de mantenimiento.
	7.5 Daño por objeto extraño al motor FOD, causas y soluciones.
	7.6 Inspección de la sección fría y caliente.
	7.7 Ensayos No-destructivos, inspección boroscopica.
	7.8 Componentes con vida limitada.
Unidad Didáctica 8:	Temas:
	8.1 Ciclo termodinámico de instalación de una turbina de vapor.
TURBINAS DE VAPOR	8.2 Instalaciones de centrales termoeléctricas.
	8.3 Esquemas de circuito único y ciclo combinado.
	8.4 Rendimiento económico de una instalación de turbina de vapor.
	8.5 Cálculo de una turbina de acción y reacción.
	8.6 Ejercicios tipos.
Unidad Didáctica 9:	Temas:
ELEMENTOS	9.1 Armazón o carcasa.
CONSTRUCTIVOS DE	9.2 Toberas y distribuidores.
TURBINA DE VAPOR	9.3 Velocidad adiabática del vapor.
	9.4 Ecuación de continuidad.

	9.5 Forma de los alabes Calculo mecánico de los alabes.
	9.6 Calculo estático y dinámico de los alabes.
	9.7 Materiales de fabricación de alabes.
	9.8 Prensa estopas.
	9.9 Efecto de las altas temperaturas.
	9.10 Estudio de pérdidas en turbinas de vapor.
Unidad Didáctica 10:	Temas:
	10.1 Definiciones.
COGENERACIÓN	10.2 Beneficios de la Cogeneración.
	10.3 Cogeneración convencional.
	10.4 Clasificación de los sistemas de cogeneración.
	10.5 Desarrollo de los sistemas de cogeneración.
	10.6 La cogeneración como sistema de conversión energéticas.
	10.7 Ciclos de cogeneración.
	10.8 Aplicaciones en la Industria.

3. Referencia Bibliográfica general de la unidad de formación:

Texto base: Apuntes del Docente de la Materia

- Steam Turbines, Theory and Design, P. Shlyakhin
- Turbo maquinas de Vapor y Gas, calculo y construcción, M. Lucini
- Aircraft Gas Turbine Powerplants, International Standard book Number 0-89100-255-3 IAP, Inc. Charles E. Otis.
- Motores de Reacción, tecnología y operación de vuelo. Martín Cuesta Álvarez
- Jet engine Fundamentals Operations Instructions. Pratt and Whitney Aircraft
- Turbinas de Vapor y Gas de las Centrales Nucleoeléctricas. Editorial MIR. B.M. Troyanovski.
- Turbinas de Vapor, Teoría del proceso térmico y construcciones de turbinas. Parte 1 y 2. Editorial MIR.
 A.V. Schegliaiev.
- Turbinas de Gas. Pedro Fernández Diez.
- Turbo maquinas Térmicas fundamentos de diseño termodinámico. Cohen, H. Rogers G. Saravanamittoo.

