

Carrera o Programa: INGENIERÍA MECÁNICA (319801)

Gestión: 2023

Programa Analítico (Asignatura/Taller/Laboratorio)

1. Datos Generales:

Unidad de Formación:	MÁQUINAS HIDRÁULICAS Códig		Código SISS:2018040
Carácter: Obligatoria/Electiva	OBLIGATORIA		
Nivel (Semestre/año):	SÉPTIMO SEMESTRE		
Dependencia: Carrera/Programa/Departamento	DEPARTAMENTO DE MECÁNICA		
Carga horaria total semestre/año	120 HORAS SEMESTRE	Créditos acadén	nicos:
Pre-requisitos:	MECÁNICA DE FLUIDOS (2018135)		

2. Contenidos Mínimos:

Unidad Didáctica 1: INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS	 Temas: Clasificación general de las máquinas hidráulicas por el tipo de flujo. Demandas energéticas para utilizar turbo máquinas. Planillas y curvas de carga Magnitudes básicas: caudal, altura, potencia, rendimientos Tipos de centrales hidro energéticas
Unidad Didáctica 2: TEORÍA BÁSICA DE LAS TURBOMÁQUINAS	Temas: - Número específico de las máquinas hidráulicas - Triángulo de velocidades - Ecuación de Euler para las turbomáquinas - Tipos de turbinas por grado de reacción
Unidad Didáctica 3: MÁQUINAS DE IMPULSIÓN	Temas: - Fundamentos generales de turbinas de impulsión - Dimensiones geométricas principales de las turbinas Pelton - Rodete - Inyector - Álabes o Cucharas - Dimensiones geométricas principales de turbinas Michell – Banki - Rodete
Unidad Didáctica 4: CAVITACIÓN	Temas: - Definir el problema de la cavitación en las turbo máquinas hidráulicas.

	 Explicar los efectos que se manifiestan en lasturbomáquinas debido a la cavitación. 	
	- Calcular la altura de aspiración máxima para evitar cavitación.	
	Calcular las dimensiones de los conos de succión para máquinas de reacción.	
Unidad Didáctica 5:	Temas:	
MÁQUINAS DE FLUJO	- Fundamentos generales para el cálculo de las turbinas Francis.	
RADIAL Y MIXTO	Dimensiones geométricas principales de las turbinas Francis	
TO LOTAL T WINCE	- Carcasa	
	- Rodete	
	- Geometría de los álabes del rodete	
	- Distribuidor	
	- Álabes directores	
Unidad Didáctica 6:	Temas:	
MÁQUINAS DE FLUJO	- Fundamentos generales para el cálculo de Turbinas Kaplan y Hélice	
AXIAL	Dimensiones geométricas principales de las turbinas Kaplan y Hélice	
7 5 1.7 1.2	- Carcasa	
	- Rodete	
	- Perfil de los Álabes	
	- Distribuidor	
	- Álabes directores	
	- Cono de succión	
Unidad Didáctica 7:	Temas:	
REGULACIÓN DE LAS	Motivos para la regulación de las turbomáquinas	
TURBINAS HIDRÁULICAS	- Tipos de regulación	
	- Regulación por variación de caudal	
	- Regulación por transferencia de carga	
	- Influencia de la regulación sobre el rendimiento	
	- Mecanismos de regulación	
Unidad Didáctica 8:	Temas:	
ESTUDIO PARTICULAR DE	- Esquemas de bombeo	
LAS BOMBAS	- Tipos de bombas hidráulicas por condición de flujo	
HIDRÁULICAS	- Bombas por tipo de fluidos (viscosos, corrosivos)	
	- Acoplamiento de bombas	
	- Bombas en serie	
	- Bombas en paralelo	
Unidad Didáctica 9:	Temas:	
BOMBAS CENTRÍFUGAS	- Teoría del impulsor 9.2 Carga teórica de una bomba centrífuga 9.3 Perfil de	
	los álabes 9.4 Forma de la carcasa 9.5 Limitaciones de succión (NPSH)	
Unidad Didáctica 10:	Temas:	
BOMBAS DE	- Principio del desplazamiento positivo	
DESPLAZAMIENTO	- Tipos de bombas de desplazamiento positivo	
POSITIVO	- Bombas reciprocantes (de un cilindro)	
	- Bombas con varios cilindros	
	- Bombas rotatorias	

- 1.- DE SOUZA, Zulcy, (1990) "Centraishidro e Termelétricas" ED. Edgard Blucher.
- 2.- MACINTYRE, Archibald, J. (1983) "Máquinasmotrizes hidráulicas". ED. Guanabara Dois
- 3.- MATAIX, Claudio, (1975) "Mecánica de fluidos y Máquinas Hidráulicas", ED. Harper&Row.
- 4.- POLO ENCINAS, Manuel, (1983) "Turbomáquinas Hidráulicas", ED. Limusa.
- 5.- QUANTZ, L, (1968) "Motores hidráulicos", ED. Gustavo Gili.
- 6.- RODRÍGUEZ, Camilo (1979) "Máquinas Hidráulicas" ED. CEILP.
- 7.- SOLER, Manuel (1992) "Manual de bombas". ED. Grafistec.
- 8.- STREETER/WYLIE (1981) "Mecánica de los Fluidos" ED. Mc Graw Hill.
- 9.- VIEJO ZUBICARAY, Manuel, (1990) "Bombas (teoría, diseño y aplicación), ED. Limusa.
- 10.- VMEH, Viceministerio de Energía e Hidrocarburos de Bolivia, (2000) "Manual para la elaboración de proyectos de electrificación rural" (MEPER).